PHYSICAL QUANTITIES AND MEASUREMENT <u>NUMERICALS</u>

Q.1: The density of air is 1.28 g litre⁻¹. Express it in :

Solution:

a) Density of air =
$$1.28 \text{ g litre}^{-1}$$

$$= \frac{1.28}{1000} \text{ g cm}^{-3}$$

$$=$$
 1.28 kg m⁻³

: 1 g litre⁻¹ =
$$\frac{1}{1000}$$
 g cm⁻³ = 1 kg m⁻³

Q.2: The dimensions of a hall are 10 m x 7 m x 5 m. If the density of air is 1.11 kg m⁻³, find the mass of the air in the hall.

Solution:

$$=$$
 350 m³

Density of air =
$$1.11 \text{ kg m}^{-3}$$

=
$$1.11 \text{ kg m}^{-3} \times 350 \text{ m}^3$$

Q.3: The density of Aluminium is 2.7 g cm⁻³. Express it in kg m⁻³.

Solution:

Density of Aluminium =
$$2.7 \text{ g cm}^{-3}$$

$$=$$
 2700 kg m⁻³

1 g cm
$$^{-3}$$
 = 1000 kg m $^{-3}$

Q.4: The density of Alcohol is 600 kg m⁻³. Express it in g cm⁻³.

$$= \frac{600 kgm^{-3}}{1000}$$

: 1 kg m⁻³ =
$$\frac{1}{1000}$$
 g cm⁻³

Q.5: A piece of zinc of mass 438.6 g has a volume of 86 cm³. Calculate the density of zinc.

Solution:

Density of a piece of zinc =
$$\frac{mass}{volume}$$

$$= \frac{438.6g}{86cm^3}$$

$$= 5.1 g cm^{-3}$$

Q.6: A piece of wood mass 150 g has a volume of 200 cm³. Find the density of wood in:

Solution:

a) Mass of a piece of wood
$$=$$
 150 g $=$ 200 cm³

Density (in C.G.S. unit) $=$ $\frac{mass}{volume}$
 $=$ $\frac{150g}{200cm^3}$
 $=$ 0.75 g cm⁻³

b) Density (in C.G.S. unit) =
$$0.75 \text{ g cm}^{-3}$$

Density (in S.I. unit) = $0.75 \text{ g cm}^{-3} \times 1000$
= 750 kg m^{-3}

Q.7: Calculate the volume of wood of mass 6000 kg if the density of wood is 0.8 g cm⁻³.

Mass of wood =
$$6000 \text{ kg}$$

Density of wood = 0.8 g cm^{-3}
= $0.8 \text{ g cm}^{-3} \times 1000$
= 800 kg m^{-3}
Volume of wood = $\frac{mass}{density}$
= $\frac{6000 \text{ kg}}{800 \text{ kgm}^{-3}}$
= 7.5 m^3

Q.8: Calculate the density of a solid from the following data:

- a) mass of solid = 72 g
- b) Initial volume of water in measuring cylinder = 24 ml
- c) Final volume of water when solid is completely immersed in water = 42 ml

Solution:

Mass of solid = 72 g
Initial volume of water in measuring cylinder,
$$v_1$$
 = 24 ml

Final volume of water when solid is completely immersed in water, v_2 = 42 ml

Volume of solid = $v_2 - v_1$

= 42 ml - 24 ml

= 18 ml

= 18 cm³

= $\frac{mass}{volume}$
 $\frac{72 g}{18 cm^3}$

= 4 g cm⁻³

- Q.9: The mass of an empty density bottle is 21.8 g, when completely filled with water it is 41.8 g and when filled completely with liquid it is 40.6 g. Find :
 - a) the volume of the density bottle.
 - b) the relative density of liquid.

Mass of an empty density bottle,
$$m_1$$
 = 21.8 g
Mass of density bottle + water, m_2 = 41.8 g
Mass of density bottle + liquid, m_3 = 40.6 g
 \therefore Mass of water, $m_2 - m_1$ = (41.8 - 21.8) g
= 20 g
 \therefore Mass of liquid, $m_3 - m_1$ = (40.6 - 21.8) g
= 18.8 g
a) Volume of the density bottle = $\frac{mass}{density}$
= $\frac{20g}{1gcm^3}$ Density of Water is 1 gcm⁻³ or 1000 kgm⁻³ at 4°C

$$= \frac{m_3 - m_1}{m_2 - m_1}$$

$$= \frac{18.8g}{20g}$$

Q.10: Following the following observation, calculate the density and relative density of the brine solution. the volume of the density bottle.

Mass of empty density bottle = 22 g Mass of bottle + water = 50 g Mass of bottle + brine solution = 54 g

Mass of density bottle + brine solution,
$$m_3 = 54 g$$

∴ Mass of water,
$$m_2 - m_1$$
 = (50 – 22) g = 28 g

$$\text{ Mass of brine solution,} \quad m_3 - m_1 = (54 - 22) g \\
 = 32 g$$

$$\therefore \text{Volume of the density bottle/brine solution} = \frac{mass}{density}$$

$$\frac{28g}{1gcm^3}$$

$$\therefore \text{ Density of brine solution} = \frac{mass}{volume}$$

$$= \frac{32g}{28cm^3}$$

$$= \frac{m_3 - m_1}{m_2 - m_1}$$

$$= \frac{32g}{28g}$$

Q.11: The mass of an empty density bottle is 30 g, it is 75 g when filled completely with water and 65 g when filled completely with a liquid it is 40.6 g. Find :

- a) the volume of the density bottle.
- b) the density of liquid.
- c) the relative density of liquid.

Solution:

 $m_2 - m_1$

 $\frac{35g}{45g}$

0.77